
Cache Refill/Access Decoupling 
for Vector Machines

Christopher Batten, Ronny Krashinsky, Steve Gerding, Krste Asanović

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

September 23, 2004



Outline
• Motivation

– Large bandwidth-delay product memory systems
– Access parallelism and resource requirements

• The SCALE memory system
– Baseline SCALE memory system
– Refill/access decoupling
– Vector segment accesses

• Evaluation
• Conclusions



Bandwidth-Delay Product
• Modern memory systems

– Increasing latency: Higher frequency processors 
– Increasing bandwidth: DDR, highly pipelined, interleaved banks

• These trends combine to yield very large and growing 
bandwidth-delay products
– Number of bytes of memory bandwidth per processor cycle times 

the number of processor cycles for a round trip memory access
– To saturate such memory systems, processors must be able to 

generate and manage many hundreds of outstanding elements

Higher Frequency Processors Lower Frequency Processors

BW BW

Latency
Latency



Access Parallelism
• Memory accesses which are independent and thus can 

be performed in parallel exhibit access parallelism
• The addresses of such accesses are usually known 

well in advance 
• We can exploit access parallelism to saturate large 

bandwidth-delay memory systems

loop
load
load
compute
store
end

L
L

1 2 3
S

Time



Access Parallelism
• Memory accesses which are independent and thus can 

be performed in parallel exhibit access parallelism
• The addresses of such accesses are usually known 

well in advance 
• We can exploit access parallelism to saturate large 

bandwidth-delay memory systems

loop
load
load
compute
store
end

L
L

1 2 3
S

Time



Access Parallelism

L
L

L
L

L
L

1 2 3
1 2 3

S
S

S

1 2 3

Time



Access Parallelism

L
L

L
L

L
L

Exploiting access parallelism requires
• Access management state
• Reserved element data storage

1 2 3
1 2 3

S
S

S

1 2 3

Time



Structured Access Parallelism
• The amount of required access management state and 

reserved element data storage scales roughly linearly 
with the number of outstanding elements

• Structured access parallelism is when the addresses of 
parallel accesses form a simple pattern such as each 
address having a constant offset from the previous 
address

Goal: Exploit structured access parallelism to saturate 
large bandwidth-delay product memory systems, while 
efficiently utilizing the available access management 

state and reserved element data storage



Access Parallelism in SCALE
• SCALE is a highly decoupled vector-thread processor

– Several parallel execution units effectively exploit data level 
compute parallelism

– A vector memory access unit attempts to bring whole vectors of 
data into vector registers as in traditional vector machines

– Includes a unified cache to capture the temporal and spatial 
locality readily available in some applications

– Cache is non-blocking to enable many overlapping misses

• We introduce two mechanisms which enable the SCALE 
processor to more efficiently exploit access parallelism
– Vector memory refill unit provides refill/access decoupling
– Vector segment accesses represent a common structured 

access pattern in a more compact form



The SCALE Memory System

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

Main Memory



The SCALE Memory System

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

Control processor 
issues commands to 
the vector memory 
access unit and the 
vector execution unit

Main Memory



The SCALE Memory System

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

Command queues allow 
decoupled execution

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

Main Memory

CPCP

Control processor 
issues a vector load 
command to the VMAU
vlw rbase, vr1



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

VMAU breaks vector 
load into multiple cache 
bandwidth sized blocks 
and reserves storage in 
load data queue

VMAU

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

VMAU makes a cache 
request for each block 
and if request is a hit, 
the data is written into 
the load data queue

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

VME executes register 
writeback command to 
move the data into 
architectural register

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

On a miss the cache 
allocates a new pending 
tag and replayQ entry

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

If needed the cache 
reserves a victim line in 
the cache data array

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

If a pending tag for the 
desired line already 
exists then the cache 
just needs to add a new 
replayQ entry

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

When a refill returns 
from memory, the cache 
writes the refill data into 
the data ram 

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

Cache then replays 
each entry in the replay 
queue, sending data to 
the LDQ as needed

Main Memory



Tracing a Vector Load

Tags Data

LD
Q

ReplayQ
Pending

Tags

Non-Blocking Cache

Address

VMAU

Store
Data

VEU

Address

VEU
CmdQ

Load
CmdQ

Store
CmdQ

CP

Large numbers of outstanding 
accesses require great deal of 
access management state and 
reserved element data storage

Main Memory



Required Queuing Resources
Program Execution

VMAU
Stores

VMAU
Loads

Memory Latency
VEU CP



Required Queuing Resources
Program Execution

VMAU
Stores

VMAU
Loads

Memory Latency
VEU CP

Load CmdQ

VEU Command Queue

Store Command Queue

Load Data Queue

Replay Queue

Pending Tags



Vector Memory Refill Unit

Tags Data

LD
Q

ReplayQ
Pending

Tags

Miss Address File

CP

VMRU

VMRU
CmdQ

Add a decoupled 
vector memory 
refill unit to bring 
lines into the cache 
before the VMAU 
accesses them

Load
CmdQ

VEU
CmdQ

Store
CmdQ

VMAU VEU

Store
Data

Address

Main Memory



Vector Memory Refill Unit
• VMRU runs ahead of the VMAU and pre-executes vector 

load commands
– Issues refill requests for each cache line the vector load requires
– Uses cache as efficient prefetch buffer for vector accesses, but 

because it is a cache, the buffer also captures reuse
– Ideally the VMRU is far enough ahead that VMAU always hits

• Key implementation concerns
– Throttling the VMRU to prevent evicting out lines which have yet

to be used by the VMAU
– Throttling the VMRU to prevent it from using up all the cache 

miss resources and blocking the VMAU
– Throttling the VMAU to enable the VMRU to get ahead for 

memory bandwidth limited applications
– Interaction between VMRU and cache replacement policy
– Handling vector stores: allocating versus non-allocating



Required Queuing Resources
Program Execution

VMRUVMAU
Loads

VMAU
Stores

Memory Latency
VEU CP

VMRU CmdQ

Command Queues

Pending Tags

Trade off increase in compact 
command queues for drastic 
decrease in expensive replay 

and load data queues

LDQ

Replay Q



Vector Segment Accesses
• Vector processors usually use multiple strided 

accesses to load stream-of-records or groups of 
columns into vector registers

vr1

vr2
Stream
Corner
Turn

vr3

Mem



Vector Segment Accesses
• Vector processors usually use multiple strided 

accesses to load stream-of-records or groups of 
columns into vector registers

vr1

vr2
Stream
Corner
Turn

vr3

Mem



Vector Segment Accesses
• Vector processors usually use multiple strided 

accesses to load stream-of-records or groups of 
columns into vector registers

• Several disadvantages
– Increases bank conflicts in banked caches or memory systems
– Ignores spatial locality in the application
– Makes inefficient use of access management state

vr1

vr2
Stream
Corner
Turn

vr3

Mem



Vector Segment Accesses
• Segment accesses uses efficient buffering under the 

existing data crossbar to perform the stream corner 
turn in hardware with a single vector memory command

• Reads data from the cache in a unit stride fashion and 
then writes data into the vector register file one element 
at a time

vr1

vr2
Stream
Corner
Turn

vr3

Mem



Evaluation
• Microarchitectural C++ model of control processor, 

VMRU, VMAU, VAE, and non-blocking cache
• “Magic” main memory with a latency of 100 cycles and 

bandwidth of 8 bytes/cycle to model the planned 
SCALE prototype system
– Bandwidth delay product is 800 bytes = 25 cache lines

• A selection of kernels and microkernels which exhibit a 
wide variety of characteristics
– Cooley-Tukey Fast Fourier Transform
– Inverse Discrete Cosine Transform
– Vertex 3D to 2D projection
– Matrix transpose
– Color conversion



VVAdd Word Microkernel
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

Total Load Data Queue Size Total Replay Queue Size



RGBYIQ Kernel
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

Total Load Data Queue Size Total Replay Queue Size



Performance vs. Mem Latency



Conclusions
• Saturating large bandwidth-delay memory 

systems requires many in-flight elements and 
thus a great deal of access management state 
and reserved element data storage

• The SCALE processor uses refill/access 
decoupling and vector segment accesses to 
efficiently saturate its memory system with 
hundreds of outstanding accesses

Paper to appear in 37th International Symposium on Microarchitecture, December 2004 


	Cache Refill/Access Decoupling for Vector Machines
	Outline
	Bandwidth-Delay Product
	Access Parallelism
	Access Parallelism
	Access Parallelism
	Access Parallelism
	Structured Access Parallelism
	Access Parallelism in SCALE
	The SCALE Memory System
	The SCALE Memory System
	The SCALE Memory System
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Tracing a Vector Load
	Required Queuing Resources
	Required Queuing Resources
	Vector Memory Refill Unit
	Vector Memory Refill Unit
	Required Queuing Resources
	Vector Segment Accesses
	Vector Segment Accesses
	Vector Segment Accesses
	Vector Segment Accesses
	Evaluation
	VVAdd Word Microkernel
	RGBYIQ Kernel
	Performance vs. Mem Latency
	Conclusions

